Page 7 - CH-7-SLRC-HOME ASSIGNMENT
P. 7

dx
                   6.  Evaluate∫
                                  2
                                 x −6x+13
                             2
                                                    2
                       Soln: x − 6x + 13 = (x − 3) + 4
                              dx           dx           dx
                       So ∫         = ∫          = ∫
                                                          2
                                             2
                            2
                           x −6x+13     (x−3) +4     (x−3) +2 2
                       Put x − 3 = t, then dx = dt
                                      dx         dx     1   −1  t      1    −1  x−3
                       Therefore ∫         = ∫       = tan       + C = tan        + C
                                                2
                                    2
                                   x −6x+13     t +2 2  2      2       2        2
                                     dx
                   7.  Evaluate ∫
                                 (x+1)(x+2)
                                1        A     B
                       Soln:          =     +     where A and B are to be determined.
                            (x+1)(x+2)  x+1   x+2
                         This gives 1 = A(x + 2) + B(x + 1)
                       Equating the coefficients of x and the constant term we get A+B=0 and 2A+B=1
                       Solving these equations we get A = 1 and B = -1
                                                        1         1    −1
                       Thus the integrand is given by         =     +
                                                    (x+1)(x+2)   x+1   x+2
                                       dx         dx      dx                                      x+1
                       Therefore  ∫          = ∫     − ∫     = log|x + 1| − log|x + 2| + C = log|    | + C
                                   (x+1)(x+2)    x+1     x+2                                      x+2
                   8.  Evaluate ∫ logxdx
                                                                 d
                       ∫ logxdx = ∫ logx. 1dx = logx ∫ dx − ∫      (logx)∫ dx
                                                                dx
                                                               1
                                                                       = (logx)x − ∫ x dx = xlogx − x + C
                                                               x
                                    2
                   9.  Evaluate ∫ √x + 2x + 5dx
                            2
                                                        2
                       ∫ √x + 2x + 5 dx = ∫ √(x + 1) + 4dx
                       Put x + 1 = y so that dx = dy
                                                      2
                                 2
                                                            2
                       Then ∫ √x + 2x + 5 dx = ∫ √y + 2 dy
                                                 1             4
                                                      2
                                                                           2
                                                                    =  y√y + 4 + log|y + √y + 4| + C
                                                 2             2
                                      1
                                                  2
                                                                                2
                                    = (x + 1)√x + 2x + 5 + 2log|x + 1 + √x + 2x + 5| + C
                                      2
                                 π
                                     3
                                 4
                   10. Evaluate ∫ sin 2tcos2tdt
                                0
                                                                         1
                       Put sin2t = u so that 2cos2tdt = du or cos2tdt = du
                                                                         2
                                                              1
                                                        1
                                            1
                                                          4
                                                 3
                                                                   4
                              3
                       So ∫ sin 2tcos2tdt = ∫ u du = u = sin 2t = F(t)
                                            2           8     8
                         π
                         4                 1      π             1
                                                          4
                             3
                       ∫ sin 2tcos2tdt =     [sin 4  − sin 0] =
                        0                  8      2             8
   2   3   4   5   6   7   8