Page 3 - CH-7-SLRC-HOME ASSIGNMENT
P. 3


               23.      2   dx    1  log  x a    c .
                                      
                       x  a 2  2a   x a
                                      
               24.      2   dx    1  log  a x    c
                       a  x 2  2a   a x
                                      
               25.      dx     log x   x   a 
                                         2
                                             2
                                                c
                         2
                        x   a 2
                                             2
               26.      dx     log x   x  a 
                                         2
                                                c
                        x   a 2
                         2
               27.  Forms of partial fractions:
                               
                            px q            A      B
                                       
                     (i)             ,a b;      
                                             
                                                   
                                 
                            
                          (x a)(x b)       x a x b
                             
                          px q     A      B
                     (ii)       ;     
                                          
                                   
                            
                          (x a) 2  x a (x a) 2
                                    
                             px   2  qx r  A     B      C
                     (iii)               ;           
                                                         
                                 
                                                  
                                            
                                      
                            
                          (x a)(x b)(x c) x a x b      x c
                           px   2  qx r   A   B      C
                     (iv)             ;            
                                                       
                                  
                                        
                                               
                               2
                          (x a) (x b)  x a (x a)  2  x b
                           px   2  qx r   A  B        C      D
                     (v)             ;                    
                                  
                                        
                            
                                                       
                                                               
                                               
                               3
                          (x a) (x b)  x a (x a)  2  (x a) 3  x b
                            px   qx r     A      Bx C
                                                     
                               2
                                                                        
                     (vi)                ;               , where  x   2  bx c  cannot be factorised.
                                            
                          (x a)(x  bx c)  x a x    bx c
                                                       
                                                  2
                            
                                      
                                 2
               28.  Integration by parts
                      f(x)g(x)dx f(x) g(x)dx      [f'(x) g(x)dx]dx  = first function × integral of second function –
                                                   
                                
                     integral of {product of differential of first and integral of second}.
                                            
                            
               29.    e [f(x) f'(x)]dx e f(x) c.
                        x
                                     
                                        x
                                   x x   a 2  a 2
                                      2
                                                            2
               30.     x  a dx              log x   x  a  .
                                                         2
                         2
                             2
                                                                c
                                      2       2
                                      2
                                                             2
                         2
                                                         2
               31.     x  a dx  x x  a 2    a 2 2  log x   x  a 
                             2
                                                                c
                                      2
                                      2
                             2
                         2
               32.     a  x dx   x a  x 2    a 2  sin  1     x      c .
                                      2       2       a 
               33.  Integrals of the form    dx    . We can express the integrand as    dx      . Now we
                                                                                            2
                                         ax   2  bx c                              a[(x    2 ]
                                                 
                                                                                           )
                     can use formula (13) given above for       2   dx  .
                                                             x   a 2
   1   2   3   4   5   6   7   8