Page 5 - CH-7-SLRC-HOME ASSIGNMENT
P. 5
B. DEIFINITE INTEGRALS
01. Integral as a limit of a sum
b 1 b a
f(x)dx (b a) lim [f(a) f(a h) f(a 2h) .... f(a (n 1)h)], where h
a n n n
Another form
b
f(x)dx lim h [f(a) f(a h) f(a 2h) .... f(a (n 1)h)], where nh = b – a.
a h 0
02. Properties of Definite integrals
b a
(i) f(x)dx f(x)dx
a b
b b
(ii) f(x)dx f(y)dy
a a
b c b
(iii) f(x)dx f(x)dx f(x)dx, for a c b
a a c
b b
(iv) f(x)dx f(a b x)dx
a a
a a
(v) f(x)dx f(a x)dx
0 0
2a a a
(vi) f(x)dx f(x)dx f(2a x)dx
0 0 0
2a a
(vii) f(x)dx 2 f(x)dx,if f(2a x) f(x)
0 0
= 0 if f(2a x) f(x)
a a
(viii) f(x)dx 2 f(x)dx if f(x) is an even function
a 0
= 0, if f(x) is an odd function.
b b b
(ix) [f(x) g(x)]dx f(x)dx g(x)dx .
a a a
03. Some important results which are often used
(i) 1 2 3 .... n n(n 1) or 1 2 3 ... (n 1) n(n 1)
2 2
... (n 1)
(ii) 1 2 3 .... n n(n 1)(2n 1) or 1 2 3 2 n(n 1)(2n 1)
2
2
2
2
2
2
2
6 6
2
2
3
3
3
(iii) 1 2 3 .... n n (n 1) 2 or 1 2 3 ... (n 1) n (n 1) 2
3
3
3
3
3
4 4