Page 5 - CH-7-SLRC-HOME ASSIGNMENT
P. 5

B. DEIFINITE INTEGRALS
               01.  Integral as a limit of a sum
                                                                                          
                     b                 1                                                 b a
                      f(x)dx (b a) lim  [f(a) f(a h) f(a 2h) .... f(a (n 1)h)],  where h
                                                             
                                
                                                                     
                                                        
                                                                        
                                                 
                                                                 
                                                    
                            
                                            
                     a             n n                                                  n
                     Another form
                     b
                      f(x)dx   lim h [f(a) f(a h) f(a 2h) .... f(a (n 1)h)],  where nh = b – a.
                                              
                                           
                                                               
                                                   
                                                           
                                       
                                                                   
                                                       
                     a        h 0
               02.  Properties of Definite integrals
                          b         a
                     (i)     f(x)dx      f(x)dx
                          a         b
                          b       b
                     (ii)     f(x)dx    f(y)dy
                          a       a
                          b       c        b
                                                        
                     (iii)    f(x)dx   f(x)dx   f(x)dx, for a c b
                          a       a        c
                          b       b
                     (iv)     f(x)dx    f(a b x)dx
                                       
                          a       a
                          a       a
                     (v)     f(x)dx     f(a x)dx
                                      
                          0       0
                          2a       a       a
                     (vi)     f(x)dx   f(x)dx    f(2a x)dx
                                                
                          0        0       0
                          2a        a
                                    
                     (vii)     f(x)dx 2 f(x)dx,if f(2a x) f(x)
                                                 
                                                     
                                 
                          0         0
                                         = 0 if f(2a x)  f(x)
                                           
                          a          a
                          
                                     
                                 
                     (viii)  f(x)dx 2 f(x)dx  if f(x) is an even function
                           a        0
                                         = 0, if f(x) is an odd function.
                          b              b       b
                               
                     (ix)    [f(x) g(x)]dx    f(x)dx   g(x)dx .
                          a              a        a
               03.  Some important results which are often used
                                                                        
                                            
                     (i)  1 2 3 .... n  n(n 1) or 1 2 3 ... (n 1)  n(n 1)
                                                        
                                     
                             
                                            2                           2
                                                      
                                                
                                                                                            
                                                                                      
                                                                        ... (n 1) 
                                        
                     (ii)  1  2  3  .... n   n(n 1)(2n 1) or 1  2  3     2  n(n 1)(2n 1)
                                  2
                              2
                                                             2
                           2
                                                                     2
                                          2
                                                                 2
                                                   6                                     6
                                                 
                                              2
                                                                                    
                                                                                 2
                                                                         
                                                                             3
                                                                      
                                  3
                                        
                               3
                     (iii)  1  2  3  .... n   n (n 1) 2  or 1  2  3  ... (n 1)   n (n 1) 2
                           3
                                                             3
                                                                 3
                                                          3
                                          3
                                                 4                                 4
   1   2   3   4   5   6   7   8