Page 6 - CH-7-SLRC-HOME ASSIGNMENT
P. 6

 
                                             
                                     
                                                            
                              
                     (iv)  sina sin(a h) sin(a 2h) ... sin[a (n 1)h]
                                     1  
                                                        
                                             
                                sin   nh 
                                    2     sin a  1  (n 1)h
                                                    
                                     1         2
                                sin   h 
                                     2 
                     (v)  cosa cos(a h) cos(a 2h) ... cos[a (n 1)h]           
                                     1  
                                                        
                                             
                                sin   nh 
                                    2 1      cos a  1 (n 1)h
                                                     
                                 sin     h    2
                                     2 
                                                        EXAMPLES

                   1.  Write an anti derivative  of cos2x using the method of inspection.
                                          d
                       Soln: we know that   sin2x = 2cos2x
                                          dx
                                    1 d          d  1
                               ⇒ cos2x =  sin2x =  ( sin2x)
                                    2 dx        dx 2
                                                    1
                        So the anti derivative of cos2x is  sin2x
                                                    2
                                         1−sinx
                   2.  Find the integral ∫     dx
                                            2
                                         cos x
                              1−sinx         1          sinx
                       Soln: ∫      dx = ∫      dx − ∫      dx
                                              2
                                 2
                                                          2
                              cos x        cos x       cos x
                                               2
                                                      = ∫ sec xdx − ∫ tanxsecxdx
                                                       = tanx − secx + c
                                         2
                   3.  Evaluate ∫ 2xsin(x + 1)dx
                            2
                       Put  x + 1 = t,  so that 2xdx = dt
                                                                                       2
                                           2
                       Therefore  ∫ 2xsin(x + 1)dx = ∫ sintdt = −cost + C = −cos (x + 1) + C
                   4.  Evaluate ∫ sin2xcos3xdx
                                               1
                       Soln: ∫ sin2xcos3xdx = [∫ sin5xdx − ∫ sinxdx]
                                               2
                                               1   1                         1         1
                                                               = [− cos5x + cosx] + C = −  cos5x + cosx + C
                                               2   5                        10         2

                                   dx
                   5.  Evaluate ∫
                                 √2x−x 2
                                dx          dx
                       Soln: ∫       = ∫
                              √2x−x 2    √1−(x−1) 2
                           Put x − 1 = t. Then dx = dt
                                     dx        dt
                                                                      −1
                                                         −1
                       Therefore ∫       = ∫       = sin t + C = sin (x − 1) + C
                                   √2x−x 2    √1−t 2
   1   2   3   4   5   6   7   8