Page 4 - Ans Sub
P. 4

3x – 20 = 2x + 10
                     We know that the two lines are parallel if the corresponding angles are equal
                     3x – 2x = 10 + 20
                     On further calculation
                     x = 30
                                                     0
                     Therefore, the value of x is 30 .
               5.    In figure, if AB || CD, EF ⊥ CD and ∠GED = 126°, find ∠AGE, ∠GEF and ∠FGE.












                     Solution:
                     AB || CD and GE is a transversal.
                     ∴∠AGE = ∠GED [Alternate interior angles]
                     But ∠GED = 126° [Given]
                     ∴∠AGE = 126°
                     Also, ∠GEF + ∠FED = ∠GED
                     or ∠GEF + 90° = 126° [∵ EF ⊥ CD (given)]
                     x = z [Alternate interior angles]… (1) Again, AB || CD
                     ⇒ x + y = 180° [Co-interior angles]
                     ∠GEF = 126° -90° = 36°
                     Now, AB || CD and GE is a transversal.
                     ∴∠FGE + ∠GED = 180° [Co-interior angles]
                     or ∠FGE + 126° = 180°
                     or ∠FGE = 180° – 126° = 54°
                     Thus, ∠AGE = 126°, ∠GEF=36° and ∠FGE = 54°.
               6.
                     In the given figure, if AB || CD || EF, PQ || RS, ∠RQD = 25° and ∠CQP = 60°,
                     then find ∠QRS.













                     Solution:
                     Given: AB || CD || EF, PQ || RS, ∠RQD = 25° and ∠CQP = 60°
                     To find: ∠QRS

                                                              4
   1   2   3   4   5   6   7   8   9