Page 5 - LN
P. 5
d
d
l
l
g
g
d
d
n
si
n
si
i
e
e
A
a
i
i
a
A
e
e
n
n
s
s
t
t
se
B
c
a
B
C
e
e
r
se
C
r
c
g
g
A
n
i
n
t
t
a
n
n
A
i
i
a
i
a
i
n
d
n
n
l
n
l
n
D
D
n
n
i
i
E
E
Given: A triangle ABC and a line intersecting sides AB in D and BC in E
B
d
B
C
C
A
e
e
t
B
r
r
t
a
B
i
A
n
i
a
such that .
p
B
C
r
o
a
E
D
s
a
e
i
l
l
t
l
To prove: DE is parallel to BC..
t
t
h
a
h
g
g
t
t
a
l
e
e
l
l
a
a
l
l
l
t
C
C
B
.
.
o
o
t
B
r
i
s
s
i
D
E
E
D
n
p
p
r
a
a
o
o
n
t
t
t
e
t
y
e
L
L
y
ssu
ssu
s
st
s
u
st
a
u
a
n
r
b
b
i
t
i
t
a
a
Proof: Let us start by assuming that DE is not parallel to BC.
m
m
n
r
b
st
n
u
h
a
F
s
a
C
h
T h e n t t h e r r e m u st b e a n o t t h e r r l l i i n e t t h r r o u g h D t t h a t t i i n t t e r r se ct s A C a t t F s u ch
ch
T
u
Then there must be another line through D that intersects AC at F such
e
e
ct
se
e
m
n
A
h
e
s
u
h
e
o
a
h
h
e
g
e
D
n
n
o
F
D
C
a
a
i
B
p
s
r
.
e
l
o
t
l
that DF is parallel to BC.
l
t
o
r
y
Therefore, by Basic Proportionality Theorem, we have,,
n
e
i
o
a
r
e
h
t
f
o
p
o
t
i
T
l
r
e
e
B
o
w
h
e
r
si
e
m
a
,
c
e
,
v
b
P
a
h
r
T
y
But, (given)
Thus,
Or,
Therefore, we get,
T h e r e f o r e , w e g e t ,
FC = EC.
This is possible only if points E and F are coincident.
T h i s i s p o ssi b l e o n l y i f p o i n t s E a n d F a r e co i n ci d e n t .
Hence, DF and DE are one and the same segmentts.
H e n c e , D F a n d D E a r e o n e a n d t h e sa m e se g m e n
H e n c e , D E i s p a r a l l e l t o B C
Hence, DE is parallel to BC..
5