Page 3 - LN
P. 3

a) Condition-1-All corresponding angles of quadrilateral ABCD are equal to
               corresponding angles of PQRS quadrilateral are equal


               b) Condition-2- AP, BQ, C R, DS ,

               so corresponding sides are ABPQ, BCQR, CDRS, DASP


               Ratio of corresponding sides are

               AB:PQ=1.5:3=1:2,


               BC:QR=2.5:5=1:2,

               CD:RS=2.4:4.8=1:2,


               DA:SP=2.1:4.2=1:2

               As ratios of corresponding sides are same and equiangular so these above two
               quadrilaterals are similar.

               *Similar Triangles:


               Two triangles are said to be similar, if

               (i)all the corresponding angles are equal


               (ii)all the corresponding sides are in the same ratio(or proportion)

                                                                                   AB    AC     BC
               i.e. in    ABC and   DEF, if   A    D  B    E  C    F  and        
                                                                  ,
                                                        ,
                                                                                   DE    DF     EF





               then   ABC and   DEF are similar. Symbolically   ABC ~  DEF

               Conversely if   ABC and   DEF are similar, then


                                                    AB     AC    BC
                 A    D  B    E  C    F  and         
                                   ,
                         ,
                                                    DE    DF     EF
               BASIC PROPORTIONALITY THEOREM(BPT)

               THEOREM-6.1




                                                            3
   1   2   3   4   5