Page 4 - Lesson note-2 Angle subtended by Chord,Ch.- 10 Circle
P. 4

Given: AB is a chord such that AM=BM


               To  Prove: OM ┴ AB
               Construction: Join OA and OB
                Proof:   In ΔOAM and ΔOBM,

                 OA = OB                      [radii of same circle]
                  OM=OM                   [Common]
                   AM=BM                   [Given]

               ΔOAM ≅ ΔOBM             [SSS]
               ∠ OMA =∠OMB     [C. P. C. T]
                                        0
                ∠ OMA +∠OMB  =180     (Linear pair)
                                        0
                ∠ OMA +∠OMA  =180
                              0
               2∠ OMA=180
                           0
               ∠ OMA=90

                                     0
               ∠ OMA =∠OMB= 90
               OM ┴ AB

               Hence Proved.

               EX .1 Prove that equal chords of congruent circles subtend equal angles at their centers.
   1   2   3   4   5   6   7