Page 3 - LN
P. 3
o
t
h
h
f
e
a
o
e
y
o
r
P
e
C
t
:
r
r
v
.
e
a
n
9
6
Theorem-6.9: Converse of Pythagoras theoremm
s
g
s
o
e
o
o
o
o
n
f
e
f
n
i
i
f
f
,
l
g
g
l
,
e
e
r
r
a
e
e
a
s
s
q
u
u
q
e
e
u
u
s
s
o
o
h
h
t
t
t
t
e
e
h
h
m
m
f
f
o
o
e
e
s
s
i
i
s
s
d
d
i
i
l
l
a
a
t
t
e
e
u
u
q
q
a
r
t
t
a
I
n
n
I
r
n
a
i
a
Statement: In a triangle, if square of one side is equal to the sum of the
n
i
h
s
h
e
s
a
d
e
n
o
h
e
e
e
s
s
e
d
h
e
r
e
r
a
h
g
s
squares of the other two sides, then the angle opposite the first side is a right
s q u a r e s o f f t t h e o t t h e r t t w o s i i d e s , , t t h e n t t h e a n g l l e o p p o s i i t t e t t h e f f i i r s t t s i i d e i i s a r i i g h t t
s
o
o
p
s
n
h
e
g
s
o
q
u
r
e
a
p
w
o
r
angle.
2
2
n
i
ch
i
h
A
C
Given: A ABC in which ACC = AB + BC 2
B
w
A
To prove: ABC = 90 o
o
n
a
u
,
d
o
P
Q
=
B
A
n
Construction: Construct a PQR in which Q = 90 , PQ = AB and QR =
R
r
C
=
a
st
Q
ct
BC
Proof: In ABC,
2
2
2
e
i
g
(
AC = AB + BC (i) (given)
n
v
)
o
n
In PQR, Q = 90 (by construction))
st
r
(
n
y
o
u
i
b
co
ct
a
g
g
w
e
n
Therefore, using Pythagoras theorem, we get,,
si
u
t
e
g
t
o
P
r
y
h
h
a
m
s
t
e
o
e
r
,
2
2
PR = PQ + QR 2
As PQ = AB and QR = BC (by construction)
Therefore, we get,
2
2
2
PR = AB + BC (ii)
From (i) and (ii), we get,
2
2
AC = PR
AC = PR
R
,
Q
w
P
Now in ABC and PQR, wee have,
st
n
y
b
r
co
AB = PQ, BC = QR (by construction))
n
ct
(
u
o
i
a
e
e
o
r
(
v
and AC = PR (proved above))
v
d
p
b
o
f
h
n
Therefore, by SSS criterion of congruency, we get,,
T
c
co
i
u
w
r
e
y
c
e
S
t
n
S
,
o
r
y
g
e
e
f
i
r
n
e
o
g
r
,
e
b
t
r
o
e
S
ABC PQR
Therefore, B = Q (By cpct)
o
Since, Q = 90
o
B = 90
Hence, proved.
3