Page 2 - LN
P. 2
s
q
s
u
a
q
u
t
h
a
t
e
h
e
f
o
f
t
h
t
r
e
a
r
o
e
a
i
a
l
i
n
n
a
e
t
t
e
l
r
r
n
n
e
e
,
,
g
g
g
g
l
d
d
l
h
i
i
s
s
u
u
n
n
e
e
s
s
e
t
l
o
Prove that in a right-angled triangle, the square of the hypotenuse is equal to
t
o
q
u
e
q
a
l
u
a
h
e
h
t
t
o
y
e
p
p
o
e
e
y
s
h
h
t
the sum of the squares of the other two sides..
t
h
f
e
e
o
t
o
s
r
o
d
w
m
a
s
o
i
u
h
s
s
t
e
q
f
t
e
e
u
e
r
o
R
h
ch
i
i
n
w
P
Q
Given: A right-angled PQR in which Q = 90
2
2
P
+
To prove: PR = QR + PQQ 2
Construction: Draw QM PR.
e
P
w
Q
a
h
v
e
Proof: In PMQ and PQR, we have,,
,
R
P = P (common)
o
i
9
a
s
ch
(
e
PMQ = PQR (each is 900 )
o
r
t
r
i
i
v
r
w
,
h
A
A
e
a
t
e
y
i
e
m
si
n
i
l
f
o
C
Therefore, by AA Criterion of similarity, we have,,
a
PMQ ~ PQR
Therefore,
(i)
e
P
,
Similarly in RMQ and RQP, we have,,
h
Q
R
w
a
ve
R = R (common)
o
9
a
(
i
RMQ = RQP (each is 900 )
s
e
ch
A
s
e
r
o
f
T
Therefore, by AA similarity, we have,,
e
h
y
b
A
e
r
,
e
v
t
i
l
a
r
a
e
w
,
y
h
i
m
i
RMQ ~ RQP
Therefore,
(ii)
Adding (i) and (ii), we get,
2
2
R
M
M
PQ + RQ = PM. PR + RM. RPP
R
.
+
R
=
P
.
P
(
= RP (PM + RM))
M
P
+
R
M
=
R
P
= RP RP
= RP 2
2
2
2
Hence, PQ + QR = PR
2