Page 1 - LN
P. 1
SAI International School
CLASS - X
Mathematics
e
l
a
T
r
i
g
n
CHAPTER-6: Triangless-4Lesson Notes-4
&
,
T
P
B
r
C
v
o
n
e
t
i
s
T
i
i
r
l
a
r
a
e
l
s
S
n
m
g
i
s
SUBTOPIC : Similar Triangles,BPT & its Conversee
y
o
e
a
o
g
s
T
r
a
h
m
t
r
e
h
P
Pythagoras Theorem
Theorem-6.7
m
r
h
t
o
r
t
h
o
d
i
t
d
h
h
i
g
g
m
t
w
w
l
g
r
g
l
d
a
a
e
e
d
f
f
a
n
n
n
a
r
n
r
g
o
i
g
h
h
o
f
i
r
r
t
e
n
n
g
l
l
g
t
e
a
a
f
e
v
e
r
r
a
e
e
r
v
t
f
f
o
o
e
a
t
e
x
x
If a perpendicular is drawn from the vertex of right angle of a right angled
t
t
y
e
e
l
h
h
l
n
n
b
b
e
e
o
o
y
e
e
n
t
t
a
a
s
s
s
g
h
s
h
g
d
n
d
i
i
t
i
e
h
e
i
r
s
t
s
e
e
n
g
n
g
a
a
l
h
l
n
o
o
h
t
n
t
r
t
h
t
o
o
r
p
r
e
e
p
t
e
t
u
u
s
s
e
r
e
p
p
o
o
l
l
u
n
u
a
r
r
e
a
e
d
d
n
e
n
i
t t triangle to the hypotenuse, then triangles on both sides of the perpendicular
n
c
i
c
o
,
,
h
f
i
t
t
e
e
p
p
i
f
r
o
h
a r e s i m i l a r t o t h e w h o l e t r i a n g l e a n d t o e a c h o t h e r
are similar to the whole triangle and to each other..
e
i
s
t
t
a
Given: A right angled ABC, right angled at B and BD is perpendicular to the
s
e
e
d
p
l
l
e
e
d
a
p
r
p
p
r
i
n
D
i
cu
cu
n
n
n
D
d
d
B
d
d
i
B
r
r
B
e
a
l
a
a
B
l
a
C
g
n
C
i
B
B
n
g
r
r
,
,
g
i
h
g
a
h
a
A
t
t
A
hypotenuse AC
To prove:(i) ADB ~ ABC (ii) BDC ~ ABC (iii) ADB ~ BDC
i
B
)
B
C
A
D
i
C
(
Proof:(i) Consider ADB and ABC, we have,
B
D
A
d
n
a
A = A (common)
o
s
c
i
h
e
(
ADB = ABC (each is 900 )
9
a
n
e
w
i
i
o
t
v
i
o
r
m
,
e
Therefore, by AA Criterion of similarity, we have,,
si
i
y
l
C
A
e
r
a
a
h
f
r
t
A
ADB ~ ABC
C
B
(ii)Similarily BDC ~ ABC by AA Criterion of similarity
A
C
A
d
n
B
(iii)Now, as ADB ~ ABC and BDC ~ ABC
a
So ) ADB ~ BDC
n
o
[
n
y
m
y
l
m
f
l
f
o
o
o
o
o
g
g
I
I
o
[
r
r
i
y
y
l
l
a
a
i
t
l
a
a
l
o
n
t
a
a
o
[If one polygon is similar to another polygon and this second polygon is similar to a
s
s
o
o
t
t
o
i
i
si
r
n
l
r
i
i
g
l
si
m
m
g
o
t
s
i
i
i
s
t
n
a
e
c
o
si
e
i
s
s
a
e
e
o
s
n
o
r
r
l
l
d
d
s
p
h
y
y
h
p
h
t
e
e
h
n
t
c
n
si
d
p
o
p
o
n
n
n
d
a
n
p
p
g
o
o
n
g
o
n
a
o
o
l
o
g
t
p
n
f
i
y
e
o
p
d
r
h
y
n
st
l
t
third polygon, then the first polygon iss similar to the third polygon]
h
r
g
o
e
n
h
t
,
i
i
Theorem-6.8
1