Page 3 - XII-CH10-VECTOR-LESSON NOTES
P. 3

  
                                                                                        |a  b|
                   19. Area of a triangle whose two sides are represented by  a and b  is given by   .
                                                                                             2

                   20. Cosine formulae: If a, b, c are lengths of the opposite sides respectively to the angles A, B and C
                       of a triangle ABC, then
                                b   2  c   2  a 2   c   2  a   2  b 2   a   2  b   2  c 2
                       (i) cosA            (ii) cosB            (iii) cosC 
                                   2bc                   2ac                   2ab
                   21. Projection formulae: If  a, b, c are lengths of the opposite side respectively to the angles A, B
                       and C of a triangle ABC, then
                                                 
                                  
                           
                                                        
                                                                       
                                                                              
                       (i) a bcosC ccosB   (ii) b ccosA acosC   (iii) c acosB bcosA
                                              
                   22. For any two vectors  a and b , we have
                                                 
                                        2
                                   
                                  2
                               
                                               
                                              2
                       (i)   |a b| |a|    |b| 2|a||b|
                                                 
                                               
                                        2
                                              2
                                   
                               
                                  2
                       (ii)   |a b| |a|   |b| 2|a||b|
                                                  
                       (iii)  |a b|  |a b| 2[|a|    |b| ]
                                             
                                  2
                                                         2
                                                   2
                                        
                               
                                            2
                                            
                               
                                                   2
                                     
                       (iv)  (a b).(a b)  |a| 2  |b|


               Reference Books:-
               Mathematics part – 2: R.D.Sharma.
               Mathematics part – 2: Pradeep publication.
               Mathematics part -2: R.S. Aggarwal
   1   2   3