Page 2 - XII-CH10-VECTOR-LESSON NOTES
P. 2

                                     
                   9.  i . i   j. j k.k 1  and  i . j   j.k k. i 0 , where  i, j andk  are unit vectors along x-axis, y-axis
                                                         
                                                    
                               
                                    
                       and z-axis respectively.
                                                                                       
                                                                
                                                           
                                                                                     
                                                                                
                                                                     
                                                                                          
                   10. If   is the angle between two vectors  a a i a j a k  and  b b i b j b k , then
                                                                                             3
                                                                                        2
                                                                       3
                                                                  2
                                                             1
                                                                                   1
                                        a b   a b 
                                                       3 3
                       cos   a. b       1 1   2 2  a b     .
                                       2   2  2   2   2   2
                             |a||b|     a  a  a 3  b  b  b 3
                                                        1
                                         1
                                             2
                                                    1
                                                                                
                   11. If  a   b  then  a.b 0  1 2  b b  c c  0  where  a a i b j c k  and
                                                                          
                                                                               
                                                                                   
                                         a a
                                                          1 2
                                                                            1
                                                    1 2
                                                                                      1
                                                                                 1
                                   
                         
                                   
                              
                       b a i b j c k .
                                2
                           2
                                     2
                                                                                                   
                   12. The cross product or vector product of two vectors  a and b   is given by  a b |a||b|sin n    ,
                                                             
                       where   is the angle between  a and b  and n  is a unit vector perpendicular to the plane of
                                                                     
                       a and b and +ve for a right  handed rotation from  a to b .
                                                       
                                                      
                                                |a b|                                    
                             
                   13. |a b| |a| |b|sin and  sin        , where   is the angle between  a and b
                         
                                                                                             .
                                                    |a| |b|
                   14. Properties of cross product of vectors
                                   
                       (i)   a b   
                              
                                    b a
                                                    
                                                            
                                                 
                                                      
                                    
                                                         
                       (ii)   a a   b b     i i   j j k k 0
                              
                                                               
                                             c
                                          c
                                            
                       (iii)   i j k, j k   i andk i  
                              
                                     
                                                    j
                                                    
                       (iv)   i j            j andk i
                                                           i k
                                               k
                                 j i, j k
                                                    
                                         a 0 , b 
                                
                       (v)   If  a b            0 or a||b .
                                     0
                                                             
                                          
                                                                
                                     
                       (vi)  If  a  a i a j a k  and  b  b i b j b k , then
                                                           
                                                              2
                                                                   3
                                        2
                                             3
                                                         1
                                   1
                                          
                                    i   j   k
                              
                             a b   a 1  a 2  a
                              
                                             3
                                   b 1  b 2  b 3
                                                   
                   15. Two vectors are parallel if  a b    0 .
                                                                                     
                                                                                      
                   16. Area if a parallelogram whose sides are represented by  a and b  is |a b| .
                                                              
                                                             
                                                          a b
                   17. Unit vector perpendicular to  a and b  is   .
                                                              
                                                             
                                                           |a b|
                                                                                        1  
                                                                                          
                   18. Area of parallelogram whose diagonals are represented by   a and b is   |a b| .
                                                                                      2
   1   2   3