Page 1 - Worksheet
P. 1
CH -5. Continuity and Differentiability
Work Sheets
Answer the following :
1. The function f ( x ) = [ x ] where [ x ] denotes the greatest integer function of x ,is continuous at
( a ) 4 ( b ) 0 ( c ) 1.5 ( d ) none of these
5 − 4, 0 < ≤ 1
2. The value of b for which the function f(x) = is continuous at every
2
4 + 3 , 1 < < 2
point of its domain is
( a ) – 1 ( b ) 0 ( c ) 13/3 ( d ) 1
3. If y = sin + ) , then is equal to :
(
( a ) ( b ) ( c ) ( d )
2 −1 1−2 2 −1 1−2
4. The value of c in Role’s theorem for the function f ( x ) = sinx , x ∈ [ 0, ] is:
3
( a ) ( b ) ( c ) ( d )
6 4 2 4
– 1
– 1
5. If U = sin ( 2 ) , V = tan ( 2 ) , then is:
1 + 2 1 − 2 2
1
( a ) 1 ( b ) x ( c ) ( d ) 1 −
2 1 + 2
5
6. Find the derivative of log[log(log )] with respect to x.
3x 4 1 x 2 dy
7. If y cos 1 , find .
5 dx
8. If x e x y , show that dy logx
y
dx {log(xe)} 2
1
1
9. Differentiate x sin x with respect to sin x .
2
1
10. If y e asin x , 1 x 1 then show that (1 x ) 2 d y x dy a y 0
2
dx 2 dx
11. If x a cost logtan t , y sint , find dy .
2 dx
2
2
2
12. If x = sint , y = sinpt, then prove that : (1 − ) – x + y= 0.
2
2
3
13. It is given that for the function f(x) = x – 6 x + px + q on [1 , 3 ], Rolle’s Theorem holds with
1
c = 2 + . Find the values of p and q.
√3
14. Verify Mean Value Theorem for the function f(x) = 2sinx + sin2x on [ 0, π ].