Page 5 - Lesson Note
P. 5

37.4 × 3  37.4 × 3 × 7
                                              r =  =         = 35.7cm
                                          π           22

                      2.  If cosx = −  , x lies in the third quadrant, find the values of other five trigonometric

                          functions


                          Solution: since cosx = −  we have secx = −





                          Now  sin x + cos x = 1 ⇒ sin x = 1 − cos x


                          ⇒sin x = 1 −     =      ⇒ sinx = ±


                          Since x lies in the third quadrant sinx is negative. Therefore sinx = −


                          ⇒ cosecx =−


                          Further tanx =    = ⇒ cotx =

                      3.  Find the value of sin50 − sin70 + sin10










                          Solution: sin50 − sin70 + sin10 = 2 cos             sin              + sin10

                                                                                                = −2cos60 sin10 + sin10 = 0



                      4.  Prove that tan3xtan2xtanx = tan3x − tan2x − tanx
                          Proof: we know that 3x = 2x + x
                                            ∴ tan 3x = tan (2x + x)

                               ⇒tan3x =

                               ⇒tan3x − tan3xtan2xtanx = tan2x + tanx
                               ⇒tan3x − tan2x − tanx = tan3xtan2xtanx
                                                      √
                      5.  Find the solution of sinx = −

                                        √
                      Solution: sinx = −   = −sin = sin  π +   = sin


                                      ⇒ sinx = sin   which gives

                               x = nπ + (−1)       , n ∈ Z

                      6.  Solve: sin2x − sin4x + sin6x = 0
                      Solution: The equation can be written as
                                        sin6x + sin2x − sin4x = 0
                                    ⇒ 2sin4xcos2x − sin4x = 0
                                    ⇒sin4x(2cos2x − 1) = 0

                                    ∴ sin4x = 0 or cos2x =


                                    ∴ sin4x = 0 or cos2x = cos


                                        Hence 4x = nπ or 2x = 2nπ ± , n ∈ z


                                     ⇒x =   or x = nπ ± , n ∈ z
   1   2   3   4   5   6