Page 1 - LN
P. 1

SAI International School
                                                       CLASS - X

               Mathematics
               CHAPTER-7: Co-Ordinate Geom-2Lesson Notes-2




               SUBTOPIC : Section Formula


               Section Formula


               Consider any two points A(x , y ) and B(x , y ) and assume that P (x, y) divides
                                            1
                                                       2
                                         1
                                                     2
                                                  PA    m
               AB internally in the ratio m  : m , i.e.,    1
                                            2
                                        1
                                                  PB    m 2

               Draw  AR,  PS  and  BT  perpendicular  to  the  x-
               axis.  Draw  AQ  and  PC  parallel  to  the  x-axis.
               Then, by the AA similarity criterion,
                                PA    AQ    PQ
               PAQ~BPC,  So                               (1)
                                BP    PC    BC

               Now,                     AQ = RS = OS – OR = x – x
                                                                 1

                                        PC = ST = OT – OS = x  – x
                                                             2
                                        PQ = PS – QS = PS – AR = y – y
                                                                     1
                                        BC = BT– CT = BT – PS = y  – y
                                                                 2
                                                  m     x  x    y   y
               Substituting these values in (1), we get  1    1     1
                                                  m 2   x   x   y   y
                                                         2
                                                                  2
                       m     x   x
               Taking    1      1  ,   m  (x   ) x   m  (x  x  )  , m  x   m  x   m  x  m  x , 
                       m 2   x  x       1  2         2      1       1  2   1     2      2  1
                              2
                                                                                 m  x   m  x
                m  x  m  x   m  x  m  x , m  x  m  x  ( m  m  x ) ,we have x =  1  2  2  1
                                                                  2
                                                                                    m   m 2
                                                             1
                                                     2
                                                       1
                           1
                                2
                         2
                   2
                 1
                                                2
                                              1
                                      1
                                                                                     1
                    m     y   y                     m  y   m  y
               and   1        1  , similarly we have y=  1  2  2  1
                    m 2   y   y                       m   m 2
                                                        1
                           2
               So, the coordinates of the point P(x, y) which divides the line segment joining the points A(x , y ) and
                                                                                                 1
                                                                                                    1
                                                      m  x  m  x   m  y   m  y
               B(x , y ), internally, in the ratio m  : m  are  1  2  2  1   ,  1  2  2  1
                   2
                                             1
                     2
                                                 2
                                                        m   m 2      m   m 2
                                                          1
                                                                        1
                    This is known as the section formula.
                                                              1
   1   2   3   4   5   6