Page 2 - Worksheet
P. 2
ABC is an isosceles triangle, rightt-angled at A. If the length of its hypotenuse is 12
5. A B C i s a n i s o s c e l e s t r i a n g l e , r i g h a n g l e d a t A . I f t h e l e n g t h o f i t s h y p o t e n u s e i s 1 2
g
h
r
,
t
h
c
cm, then the perimeter of the triangle is::
e
e
m
n
h
s
e
i
f
e
n
t
t
o
l
t
e
a
i
i
r
e
r
t
m
e
p
(A) (B) 12+2√6cm
(C) (D)
r
a
n
o
g
1
o
e
w
g
e
g
r
0
m
l
u
b
m
t
a
o
e
v
e
i
n
f
b
r
2
h
i
c
h
o
6
e
e
n
d
w
n
o
d
t
a
,
l
t
e
i
d
h
A
h
e
h
d
u
6.A ladder 26m long reaches the window of buillding 10m above the ground,then the
n
t
s
d i s t a n c e o f t h e f o o t o f t h e l a d d e r f r o m t h e b u i l d i n g i s _ _
distance of the foot of the ladder from the building is ___________
2
2
i
i
.
P
r
c
r
s
A
e
a
t
v
h
e
h
t
7.ABC is an isosceles triangle right angled at C. Prove that ABB = 2AC .
s
g
t
e
o
a
t
l
A
a
g
n
i
g
C
t
n
d
a
e
l
l
i
s
e
o
B
n
a
C
r
s
.
2
t
e
r
n
d
4
s
e
t
h
a
o
e
u
h
n
n
d
e
u
m
d
t
a
s
h
e
e
h
t
i
t
t
a
r
c
n
o
r
f
e
i
t
s
a
m
t
n
g
n
i
.
F
d
8.A man goes 10 m due east and then 24 m due north. Find the ddistance from the starting
p o i n t t o t h e p o i n t w h e r e h e r e a c h e d
point to the point where he reached..
= 900 . If D is the mid-point of BC, prove that
9.In right angled ABC, = 9 o
2
2
2
AB = 4AD - 3AC .
e
r
p
h
,
a
t
n
e
B
e
o
r
i
t
t
C
e
g
b
d
t
s
a
u
v
o
s
g
g
s
b
a
.
0
C
a
e
t
l
1
a
10.ABC is an obtuse angled triangle, obtuse angled at B. If AD CB, prove that
e
d
u
o
t
n
i
n
n
B
,
a
A
l
l
2
2
2
AC = AB + BC + 2BC . BD
A
A
C
C
.
i
B
s
s
B
i
D
D
o
d
m
o
r
e
d
r
u
t
t
i
i
m
u
w
w
d
d
a
a
r
r
n
e
f
f
n
i
s
h
i
e
e
s
d
e
e
d
h
t
t
t
l
l
A
A
t
o
n
n
o
a
a
I
e
I
q
q
A
A
e
l
e
n
u
t
r
i
a
t
n
u
B
B
e
e
n
a
n
a
l
l
g
n
n
l
e
g
i
i
t
i
C
l
r
l
C
r
a
a
a
,
11.In an equilateral triangle ABC, AD is the altitude drawn from A on side BC..
r
a
,
a
t
2
2
Prove that 3AB = 4AD
i
i
n
n
p
t
s
I
I
h
h
s
d
.
i
.
n
n
n
s
s
n
t
l
p
t
6
a
g
o
a
o
d
a
d
t
e
e
a
f
d
6
f
d
d
n
t
h
g
n
h
l
e
e
e
m
b
n
d
n
e
e
e
a
e
a
h
b
m
h
g
g
e
e
e
d
1
1
12.Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between
n
n
w
o
w
t
t
1
1
e
o
a
u
i
s
m
a
u
t
n
r
n
t
s
m
c
a
r
c
a
t
e
t
s
i
e
d
a
d
e
i
,
their feet is 12 m, find the distance between their tops..
e
r
2
m
n
h
n
t
t
c
t
e
s
i
i
s
o
1
t
f
e
w
b
h
n
e
p
o
q
q
i
l
i
a
n
n
l
a
t
t
a
o
a
u
u
h
h
t
t
e
s
e
P
t
r
r
t
o
P
o
s
t
f
t
e
e
h
h
f
m
m
u
u
13. Prove that in a right triangle, if square of one side is equal to the equal to the sum of the
o
o
e
e
a
a
h
h
t
h
t
t
t
h
t
t
a
a
v
v
o
l
o
l
u
e
e
q
e
u
q
e
h
a
s
a
r
h
l
l
s
g
g
e
i
d
d
i
s
e
i
e
t
u
f
g
g
u
t
f
o
n
n
t
e
s
r
q
o
o
o
q
t
i
r
e
,
n
e
a
i
i
s
s
i
r
i
,
e
e
a
r
e
r
e
f
i
i
f
n
a
h
o
h
s
a
e
d
o
u
g
d
e
g
o
h
h
q
e
s
a
p
squares of the other two sides, then the angle opposite to the first side is a rightt angle.
e
s
w
o
s
s
e
s
e
s q u a r r e s o f f t t h e o t t h e r r t t w o s s i i d e s , , t t h e n t t h e a n g l l e o p p o s i i t t e t t o t t h e f f i i r r s t t s s i i d e i i s a r r i i g h t
o
n
e
n
o
e
e
e
h
h
p
h
f
e
f
e
u
q
h
q
o
o
u
e
e
r
r
o
u
u
o
a
a
s
o
o
f
f
s
s
e
e
s
r
a
t
h
h
t
t
a
t
14.Prove that the sum of squares of the sides of a rhombus is equal to sum of the squares of
s
s
q
q
r
f
e
e
f
s
s
u
u
o
o
a
a
o
i
o
o
o
l
i
l
r
r
m
q
e
h
e
q
m
f
f
u
u
a
h
a
t
u
u
s
i
i
s
s
s
d
d
s
u
u
s
b
s
m
b
m
s
m
o
f
f
m
o
t
s
s
e
s
e
s
its diagonals.
v
T
h
P
e
e
o
a
a
e
n
r
.
a
t
t
a
o
r
S
g
e
h
o
s
t
15.State and prove Pythagoras Theoremm
d
r
y
p
2