Page 2 - Worksheet
P. 2
PQR and area ((
7. In the figure, ABC ~ P Q R a n d a r e a
ABC) = 5 Area ( P Q R )
PQR).. If BC = 10
c m , t h e n t h e l e n g t h o f Q R i s
cm, then the length of QR is::
(1) 2 cm (2)
(3) 4 cm (4)
2
e
r
a
d
R
Q
P
n
a
a
o
8.Given ~ PQR and area of ABC is 225 cm .
f
If AB = 10 cm, PQ = 15cm, find area of PQR.
d
P
Q
=
a
1
e
1
0
=
,
m
c
5
f
.
n
Q
R
i
c
r
o
f
a
,
m
P
f
B
I
A
o
i
w
r
t
e
e
t
s
a
q
e
u
i
s
a
P
t
o
e
h
a
r
a
h
i
t
t
r
o
a
e
s
t
o
r
h
f
n
h
e
o
t
f
e
l
a
i
e
l
i
a
9.Prove that the areas of two similar triangles are in the ratio of the squares of their
e
r
t
n
o
a
m
t
g
r
r
i
h
s
r
f
s
v
corresponding altitudes.
e
o
P
o
o
o
s
f
e
s
f
P
t
a
a
t
o
w
w
h
t
h
t
i
10.Prove that the ratio of areas of two similar triangles is the same as the ratio of thee
i
o
i
i
s
s
o
o
t
t
l
s
t
h
e
e
e
r
m
r
t
s
r
a
a
t
a
l
l
a
r
r
h
i
t
i
g
s
f
o
f
n
n
f
l
f
s
g
o
i
i
a
i
r
m
i
a
a
a
r
a
a
r
a
a
t
t
h
h
s
s
r
m
m
t
h
a
a
h
t
e
e
v
v
t
a
r
r
a
i
o
o
o
t
i
o
h
t
t
t
t
e
e
h
e
e
s
s
e
e
e
r
e
i
t
h
q
e
r
n
a
e
n
i
r
d
p
n
o
r
s
e
squares of their corresponding median..
m
g
f
c
o
d
e
s
o
u
a
s
r
i
a
a
i
D
D
m
2
m
B
e
c
c
i
A
p
p
i
e
D
i
i
n
n
D
D
C
a
C
i
D
e
z
r
D
B
z
11.ABCD is a trapezium in which AB||DC and AB = 2DC. Determine the ratio of the areas
r
C
|
e
t
|
i
n
h
t
C
h
e
i
m
D
e
B
B
t
t
t
|
i
a
.
B
a
t
w
w
A
=
=
A
a
n
n
e
r
r
e
h
h
s
C
2
A
|
m
e
d
s
d
u
A
u
C
.
i
A
B
n
e
h
h
of triangles AOB and COD.
2
2
e
s
t
a
f
c
t
i
l
e
v
0
p
e
s
a
c
e
r
0
.
e
u
d
I
e
r
i
l
1
t
t
h
y
l
i
r
a
s
m
i
n
a
l
g
t
i
r
o
a
e
r
T
12.The areas of two similar triangles are 100 cmm and 49 cm respectively. If the altitude
e
h
f
w
t
s
a
o
e
of the bigger triangle is 5 cm, find the corresponding altitude of the other..
i
e
i
l
a
s
s
a
h
l
t
t
b
e
u
h
e
i
t
t
e
i
b
h
n
n
c
d
c
o
o
h
m
m
d
5
5
e
g
g
i
t
i
e
n
n
e
t
t
e
e
r
h
h
r
e
g
r
t
t
e
e
t
h
h
o
o
r
g
g
r
r
e
e
i
n
n
l
l
u
d
g
g
d
.
f
f
g
t
t
o
a
i
o
i
i
a
n
i
o
e
i
t
f
c
r
c
f
f
s
,
,
o
o
e
t
o
s
n
p
r
f
p
r
r
d
d
o
o
o
h
n
e
h
o
d
u
u
a
i
n
o
13.The areas of two similar triangles are in the ratio of the squares of the corresponding
d
e
n
s
s
g
a
a
t
c
c
t
l
i
i
n
a
q
q
r
r
s
f
n
n
f
s
r
l
r
s
t
p
h
g
s
g
r
r
n
n
f
t
e
e
h
s
t
f
h
p
g
o
o
r
r
a
a
r
t
i
i
t
t
e
r
i
o
o
o
i
a
e
e
i
e
s
a
h
e
e
e
r
r
e
e
e
t
t
medians.
a
l
t
r
r
a
a
s
r
o
s
t
t
a
n
n
n
f
f
s
a
a
h
n
i
i
e
i
t
P
P
s
a
r
e
e
i
m
r
a
g
s
a
m
r
g
t
t
i
e
e
r
o
h
e
h
a
t
i
f
l
l
t
f
l
q
r
q
,
,
l
e
l
i
e
e
e
a
i
r
h
t
e
a
a
r
v
r
a
14.Prove that if the areas of two similar triangles are equal, then the triangles are
a
l
l
g
e
i
r
v
u
g
u
h
e
e
o
a
o
n
t
o
e
n
r
r
s
e
e
t
e
s
w
t
e
i
h
e
t
a
h
t
h
a
t
t
s
o
w
congruent.
t
t
15.The areas of two similar triangles are in the ratio of the squares of the corresponding
e
s
T
T
h
e
h
r
s
r
h
h
a
a
e
e
a
r
r
a
t
a
a
r
e
e
r
t
m
m
f
o
o
o
i
l
l
i
o
i
i
t
n
n
a
i
i
e
r
a
a
r
e
g
g
a
r
t
t
h
t
l
h
r
i
n
n
i
l
o
o
e
e
s
s
e
a
a
f
r
r
f
a
a
f
e
e
f
e
s
o
o
s
h
h
e
o
e
i
f
i
s
s
t
t
o
w
q
s
w
q
u
u
t
t
s
angle bisector segments.
2