Page 2 - LN
P. 2
A
B
C
But [since ABC ~~ PQR] (3)
From (2) and (3), we get,
(4)
From (1) and (4), we get,
(5)
h
r
e
r
e
e
,
P
Q
As ABC ~ PQR, therefore,,
R
f
o
t
(6)
(from (5) and (6))
Hence proved.
o
a
g
n
o
a
n
a
w
e
e
s
s
l
w
g
l
i
s
l
m
a
l
i
i
i
s
i
a
r
t
m
i
r
t
r
r
a
u
u
sq
sq
a
r
e
a
r
t
h
t
h
e
e
e
h
e
t
h
e
r
r
i
i
o
o
s
s
f
t
f
t
n
t
e
e
h
h
e
e
r
r
i
n
i
o
o
o
f
o
f
r
a
r
a
i
i
t
t
s
t
e
a
h
a
s
t
e
r
o
f
r
f
o
v
o
o
v
t
e
t
e
t
t
h
h
e
a
e
h
a
a
a
r
r
P
P
*Prove that the areas of two similar triangles are in the ratio of the squares of their
t
t
corresponding altitudes.
l
D
D
l
F
t
u
F
t
t
t
i
i
e
e
e
e
r
r
E
E
a
a
r
r
u
L
d
B
B
d
L
a
a
C
C
n
n
o
E
E
s
s
d
d
e
e
t
Given: ABC ~ DEF, AL and DM are altitudes to BC and EF respectively..
o
t
y
,
c
A
D
D
,
t
A
M
e
e
a
c
M
a
n
n
d
ve
l
l
i
t
ve
d
i
y
sp
a
a
sp
F
F
.
To prove:
Proof::
ABC ~ DEF [given]
g
]
[
i
v
e
n
e
o
s
r
sq
u
t
t
t
u
t
t
i
i
f
r
o
o
e
sq
f
o
o
s
o
r
f
t
t
a
o
r
r
r
a
f
a
a
As the ratio of the areas of two similar triangles is equal to the ratio of the squares of
o
h
o
a
h
t
h
a
h
i
e
e
e
e
t
o
t
i
e
a
e
r
r
i
i
l
a
l
r
r
i
a
i
t
t
r
r
a
t
t
w
w
o
o
f
f
o
s
si
m
a
m
o
si
s
a
e
e
q
t
h
h
s
t
s
q
o
o
l
l
a
f
f
u
a
u
i
s
e
n
a
s
n
e
g
g
l
l
i
a
e
e
a n y t w o co r r e sp o n d i n g si d e s
any two corresponding sides,,
(i))
i
(
E
M
D
Now, in ABL and DEM,,
[
B = E [given, ABC ~ DEF]
,
i
n
e
g
v
and ALB = DME [since, both are 90o]
T h e r e f o r e , b y A A c r i t e r i o n o f si m i l a r i t y , w e g e t
Therefore, by AA criterion of similarity, we get,,
ABL ~ DEM
(ii)
2