Page 1 - LN
P. 1
SAI International School
CLASS - X
Mathematics
l
g
i
e
T
r
CHAPTER-6: Triangless-3Lesson Notes-3
a
n
g
s
i
SUBTOPIC :Areas of similar Triangless
e
i
m
r
l
T
e
r
o
r
a
a
s
f
i
A
a
n
l
e
d
i
n
n
i
d
e
n
o
n
g
g
i
o
i
n
u
n
d
d
b
b
o
u
o
w
w
o
n
n
o
e
k
n
n
k
e
r
r
e
.
a
a
A
s
a
a
s
A
o
o
l
s
e
e
s
l
a
a
c
c
u
g
g
u
e
r
r
i
d
d
i
f
f
n
u
A
A
o
e
o
u
t
A
a
r
n
Area: Amount of region bounded in a closed figure known as Area..
A
r
m
:
a
f
e
o
o
e
:
r
r
m
f
e
t
1
e
x
Area of a triangle: xbasexheight
e
b
i
g
x
h
as
2
Theorem-6.6
i
v
n
o
r
t
r
a
a
o
t
i
h
s
s
t
i
i
t
a
o
o
a
h
m
e
a
a
e
v
r
r
m
i
l
l
i
h
h
t
t
e
e
t
t
o
o
o
o
f
f
o
o
a
a
r
r
i
i
t
t
s
r
s
i
s
i
g
l
n
g
e
r
l
e
a
a
u
P
P
Prove that the ratio of the areas of two similar triangles is equal to the ratio of
l
l
e
s
q
u
e
q
e
s
s
e
a
e
i
a
e
f
o
o
o
f
i
t
t
r
a
a
a
a
t
r
e
e
t
r
r
h
h
h
o
t
t
o
w
w
t
t
f
f
h
t
o
t
e
t
r
e
q
i
r
h
e
t the squares of their corresponding sidess
r
s
d
a
p
r
s
n
e
o
i
f
s
g
s
d
c
u
h
o
e
o
i
n
Given:
ABC ~ PQR
To prove:
Construction:
R
Q
Draw AD BC and PS QR..
Proof:
In triangles ADB and PSQ,
B = Q [since, ABC ~ PQR]
C
A
B
~
o
]
ct
i
o
si
n
[
b
ADB = PSQ = 90 [since AD BC and PS QR, by construction]
c
e
y
A
D
Q
,
R
r
t
s
n
u
co
n
Therefore, ADB ~ PSQQ [by AA similarity]
P
S
r
m
i
i
s
l
c
o
o
s
f
si
d
e
sp
i
n
d
o
Hence, [corresponding sides of similar triangles] (2)
n
r
[
a
e
g
r
1