Page 2 - LN
P. 2

S = a 1 + a 2 + a 3 + ………….. + a n−1 + a n

               S = a + (a + d) + (a + 2d) + (a + 3d) + ……….. + {a + (n - 2)d} + {a + (n - 1)d}
               ……………….. (i)

               By writing the terms of S in the reverse order, we get,


               S = {a + (n - 1)d} + {a + (n - 2)d} + {a + (n - 3)d} + ……….. + (a + 3d) + (a + 2d) + (a + d)
               + a

               Adding the corresponding terms of (i) and (ii), we get

               2S = {2a + (n - 1)d} + {2a + (n - 1)d} + {2a + (n - 1)d} + ………. + {a + (n - 2)d}


               2S = n[2a + (n -1)d



               ⇒ S =   [2a + (n - 1)d]

               Now, l = last term = nth term = a + (n - 1)d



               Therefore, S =   [2a + (n - 1)d] =   [a {a + (n - 1)d}] =   [a + l].




               Sum of First n Natural Numbers

               Let S be the required sum.


               Therefore, S = 1 + 2 + 3 + 4 + 5 + .................... + n

               Clearly, it is an Arithmetic Progression whose first term = 1, last term = n and number of
               terms = n.



               Therefore, S =   (n + 1), [Using the formula S =   (a + l)]




               Example 1- Find the sum of first 25 natural numbers.

               Solution- Let S be the required sum.

               Therefore, S = 1 + 2 + 3 + 4 + 5 + .................... + 25

                                                              2
   1   2   3   4   5   6   7