Page 1 - XII-CH13-LESSON NOTES
P. 1
XII-CH13-PROBABILITY
LESSON NOTES
Basic Concepts & Formulae :
1. Conditional Probability:n Given tywo eventys t and B associatyed wityh tyh e same random experimentyn
tyh e conditional probability: P(t/B) of tyh e occurrence of t knowing B h as occurred is given b:
P(t B)
P(t /B)
P(B) P(B) 0
n provided
2. Th e conditional probability: P(B/t) of tyh e occurrence of B knowing tyh aty t h as occurred is given b:
P(t B)
P(B/t) nP(t) 0
P(t)
3. Properties of conditional probability:
P(F) 0
(a) If t and B be tywo eventys of a sample space S and F is an eventy of S such tyh aty n tyh en
P[(t B)/F] P(t /F) P(B/F) P[(t B)/F]
However if t and B are disjointyn tyh en
P[(t B)/F] P(t /F) P(B/F)
P(E'/F) 1 P(E/F)
(b)
4. Multiplication tyh eorem on probability:n If t and B be tywo eventys associatyed wityh a sample space S
P(t B) P(t).P(B/t) P(B).P(t/B)privided P(t) 0nP(B) 0
tyh en
5. Multiplication rule of probability: for more tyh an 2 eventys n If tn B and C are tyh ree eventys of a
sample spacen tyh en
P(t B C) P(t).P(B/t).P[C/(t B)] P(t).P(B/t).P(C/ tB)
6. Independenty Eventysn Two eventys are said tyo be independenty if tyh e probability: of occurrence of
one of tyh em is noty afectyed b: tyh e occurrence of tyh e otyh er.
7. Multiplication rule wh en eventys t and B are independenty
P(t B) P(t).P(B)
8. Two experimentys are said tyo be independenty if for ever: pair of eventys t and B wh ere t is
associatyed wityh frsty experimenty and B wityh tyh e second experimentyn tyh e probability: of tyh e
simultyaneous occurrence of tyh e eventys t and B wh en tyh e tywo experimentys are performed is tyh e
producty of P(t) and P(B) calculatyed separatyel: on tyh e basis of tywo experimentys i.e.
P(t B) P(t).P(B)
.
9. Th ree eventys tn B and C are said tyo be mutyuall: independenty if
P(t B) P(t).P(B)n P(B C) P(B).P(C)
B
P(t C) P(t).P(C)n P(t C) P(t).P(B).P(C)
10. Law of tyotyal probability:n
P(t) P(E ).P(t/E ) P(E ).P(t/E ) .... P(E )P(t/E )
1 1 2 2 n n
11. Ba:e’s tyh eoremn
P(E ).P(t /E )
i
i
P(E / t)
i
P(E ).P(t /E ) P(E ).P(t /E ) .... P(E )P(t /E )
1
1
2
2
n
n